
MODULE 4

Normalization

Sindhu Jose, CSE Dept, VJCET

SYLLABUS

Sindhu Jose, CSE Dept, VJCET

➢Different anomalies in designing a database, The idea of
normalization, Functional dependency, Armstrong’s Axioms
(proofs not required), Closures and their computation,
Equivalence of Functional Dependencies (FD), Minimal Cover
(proofs not required).

➢First Normal Form (1NF), Second Normal Form (2NF),
Third Normal Form (3NF), Boyce Codd Normal Form (BCNF),
Lossless join and dependency preserving decomposition,
Algorithms for checking Lossless Join (LJ) and Dependency
Preserving (DP) properties.

Informal Design Guidelines for Relation Schema

• Four informal guidelines that may be used as

measures to determine the quality of relation

schema design:

1. Making sure that the semantics of the attributes is clear

in the schema

2. Reducing the redundant information intuples

3. Reducing the NULL values intuples

4. Disallowing the possibility of generating spurioustuples

Sindhu Jose, CSE Dept, VJCET

Imparting Clear Semantics to Attributes in Relations

• Whenever we group attributes to form a relation schema,

we assume that attributes belonging to one relation have

certain real-world meaning and a proper interpretation

associated with them.

• The semantics of a relation refers to its meaning resulting

from the interpretation of attribute values in a tuple

Sindhu Jose, CSE Dept, VJCET

PREPARED BY SHARIKA
T R,

SNGCE

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Guideline 1

• Design a relation schema so that it is easy to explain its meaning.

• Do not combine attributes from multiple entity types

and relationship types into a single relation.

• Intuitively, if a relation schema corresponds to one entity type

or one relationship type, it is straightforward to interpret and

to explain its meaning.

• Otherwise, if the relation corresponds to a mixture of multiple

entities and relationships, semantic ambiguities will result and

the relation cannot be easily explained.

Sindhu Jose, CSE Dept, VJCET

Examples of Violating Guideline 1

Ename Ssn Bdate Address Dnumb
er

Dnam
e

Dmgr_ssn

Sam 1234 12-03-1991 Pune 1 cse 4321

Ram 4321 21-04-1995 Delhi 2 ece 5432

Sita 5432 30-01-1992 Kerala 1 cse 43211

combine attributes from Employee and Department into
single table this lacks meaning

Sindhu Jose, CSE Dept, VJCET

Redundant Information in Tuples and

Update Anomalies

• Data redundancy is a condition created within a database

or in which the same piece of data is held in two separate

places.

• Redundancy leads to

▫Wastes storage

▫ Causes problems with update anomalies

I n s e r t i o n anomalies

D e l e t i o n anomalies

M o d i f i c a t i o n anomalies

Sindhu Jose, CSE Dept, VJCET

Insertion Anomalies

• Consider the relation:

• EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Insert Anomaly:

▫Cannot insert a project unless an employee is assigned to it.

• Conversely

▫Cannot insert an employee unless an he/she is assigned to

a project.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Deletion Anomalies
• If we delete from EMP_DEPT an employee tuple that happens to

represent the last employee working for a particular department,

the information concerning that department is lost from the

database.

• Consider the relation: EMP_PROJ(Emp#, Proj#, Ename, Pname,

No_hours)

• Delete Anomaly:

▫When a project is deleted, it will result in deleting all the

employees who work on that project.

▫ Alternately, if an employee is the sole employee on a project,

deleting that employee would result in deleting the

corresponding project.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

PREPARED BY
SHARIKA T R,

SNGCE

Deleting Borg,James
record leads to losing
data about Head
Quarters dept.
We cannot insert
details about new
department as no new
employee recruited in it
yet.
If the Dept manager
changes we need to
update updating
Dmgr_ssn for all
records.
Like wise we would
have to update Pname
for all records if project
name is updated.Sindhu Jose, CSE Dept, VJCET

Modification Anomalies

• EMP_DEPT, if we change the value of one of the attributes

of a particular department say,

▫ the manager of department 5 we must update the tuples of all

employees who work in that department;

▫ otherwise, the database will become inconsistent.

• If we fail to update some tuples, the same department will

be shown to have two different values for manager in

different employee tuples, which would be wrong

Sindhu Jose, CSE Dept, VJCET

• Consider the relation:

• EMP_PROJ(Emp#, Proj#, Ename, Pname,
No_hours)

• Update Anomaly:

▫ Changing the name of project number P1 from
“Billing” to “Customer_x0002_Accounting” may cause
this update to be made for all 100 employees working on
project P1.

Sindhu Jose, CSE Dept, VJCET

Guideline 2

• Design a schema that does not suffer from the insertion,

deletion and update anomalies.

• If there are any anomalies present, then note them so that

applications can be made to take them into account.

Sindhu Jose, CSE Dept, VJCET

NULL Values in Tuples

• Reasons for nulls:

▫ Attribute not applicable or invalid

▫ Attribute value unknown (may exist)

▫ Value known to exist, but unavailable

• NULL can waste space at the storage level and may also lead to

problems with understanding the meaning of the attributes and

with specifying JOIN operations at the logical level

• Another problem with NULLs is how to account for them

when aggregate operations such as COUNT or SUM are

applied.

• if NULL values are present, the results may become unpredictable

Sindhu Jose, CSE Dept, VJCET

Guideline 3
• Relations should be designed such that their tuples will have as

few NULL values as possible

• Attributes that are NULL frequently could be placed in separate
relations (with the primary key)

• For example, if only 15 percent of employees have individual
offices,

▫ there is little justification for including an
attribute Office_number in the EMPLOYEE
relation;

▫ rather, a relation EMP_OFFICES(Essn, Office_number) can
be created to include tuples for only the employees with
individual offices

Sindhu Jose, CSE Dept, VJCET

 Consider the tables

 ▫ EMP_LOCS(EName, PLocation)

 ▫ EMP_PROJ1(SSN, PNumber, Hours, PName, PLocation)

 versus the table

 ▫ EMP_PROJ(SSN, PNumber, Hours, EName, PName, PLocation)

 If we use the former as our base tables then we cannot recover

all the information of the latter because trying to natural join

the two tables will produce many rows not in EMP_PROJ.

 These extra rows are called spurious tuples.

 Another design guideline is that relation schemas should be

designed so that they can be joined with equality conditions on

attributes that are either primary keys or foreign keys in a way such

that no spurious tuples are generated.

Generation of Spurious Tuples – avoid at any cost

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

• Suppose that we used
EMP_PROJ1 and
EMP_LOCS as the base
relations instead of
EMP_PROJ. This produces
a particularly bad schema
design because we cannot
recover the information
that was originally in
EMP_PROJ from
EMP_PROJ1 and
EMP_LOCS.

• If we attempt a NATURAL
JOIN operation on
EMP_PROJ1 and
EMP_LOCS, the result
produces many more
tuples than the original set
of tuples in EMP_PROJ.
Additional tuples that were
not in EMP_PROJ are
called spurious tuples

PREPARED BY SHARIKA
T R,

SNGCE

Sindhu Jose, CSE Dept, VJCET

• Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1
is undesirable because when we JOIN them back using
NATURAL JOIN, we do not get the correct original
information.

• This is because in this case Plocation is the attribute that relates
EMP_LOCS and EMP_PROJ1, and Plocation is neither a
primary key nor a foreign key in either EMP_LOCS or
EMP_PROJ1.

Sindhu Jose, CSE Dept, VJCET

A B C

a1 b1 c1

a2 b1 c1

a1 b2 c2

A

a1

a2

B C

b1 c1

b2 c2

R(A,B,C)

R1(A)

R2(B,C)

A B C

a1 b1 c1

a2 b1 c1

a1 b2 c2

a2 b2 c2

R1XR2

SPURIOUS TUPLESindhu Jose, CSE Dept, VJCET

Guideline 4

• Design relation schemas so that they can be joined with

equality conditions on attributes that are appropriately

related (primary key, foreign key) pairs in a way that

guarantees that no spurious tuples are generated.

• Avoid relations that contain matching attributes that are

not (foreign key, primary key) combinations because

joining on such attributes may produce spurious tuples

Sindhu Jose, CSE Dept, VJCET

Functional dependencies
 A functional dependency is a constraint between two sets of attributes

from the database.

 Suppose that our relational database schema has n attributes A1, A2,

..., An;

 The whole database is described by a single universal relation

schema R = {A1,A2, ... ,An}.

Definition. A functional dependency, denoted by X → Y, between

two sets of attributes X and Y that are subsets of R specifies a constraint

on the possible tuples that can form a relation state r of R. The constraint

is that, for any two tuples t1 and t2 in r that have t1[X] = t2[X], they

must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on

the values of the X component;

alternatively, the values of the X component of a tuple uniquely (or

functionally) determine the values of theY component.Sindhu Jose, CSE Dept, VJCET

Examples of functional dependencies

• Social security number determines employee name

SSN→ENAME

• Project number determines project name and location

PNUMBER →{PNAME, PLOCATION}

• Employee ssn and project number determines the hours

per week that the employee works on the project

{SSN, PNUMBER}→HOURS

Note:A set of attributes X functionally determines a

set of attributes Y if the value of X determines a

unique value forY
Sindhu Jose, CSE Dept, VJCET

A B

a1 b1

a2 b3

a1 b2

a2 b3

A → B So this is not a valid FD no unique

matching

X a1 (b1,b2)

✓ a2 b3

So this is a valid

FD

B → A

✓ b1 a1

✓ b3 a2

✓ b2 a1

B → A implies

 B functionally determines A

 A functionally depends on B

 A is functionally determined by B

Sindhu Jose, CSE Dept, VJCET

Exercise

EMPLOYEE(Eid, Ename, Eage, Dnum)

DEPT(Dno, Dname, Dloc)

Find valid FDs

1. Eid→Ename

2. Ename→Eid

3. Eage→Ename

4. Dno→Dname, Dloc

Sindhu Jose, CSE Dept, VJCET

Eid → Ename

• Since Eid is a Primary Key so every value is unique

• So FD satisfies

Ename → Eid
•FD do not satisfy
Eid Ename
1 Bob

2 Bob

Eage → Ename
• FD do not satisfy Eid Ename Eage

1 Bob 20
2 Bob 20

Dno → Dname, Dloc
• FD satisfy since Dno is primary key

Sindhu Jose, CSE Dept, VJCET

Types of Functional Dependancy
1. Trivial FD

▫ In Trivial Functional Dependency, a dependent
is always a subset of the determinant.

▫ It is FD of the form A→A

▫ Not a useful FD since we are not getting any
important information here

The examples of trivial functional dependencies are-

AB →A

AB → B

AB →AB

Eid, Ename→Ename // trivial
Sindhu Jose, CSE Dept, VJCET

2. Non Trivial FD

❖ In Non-trivial functional dependency, the
dependent is strictly not a subset of the
determinant.

❖ i.e. If X → Y and Y is not a subset of X, then it is
called Non-trivial functional dependency.

roll_no → name is a non-trivial functional
dependency, since the dependent name is
not a subset of determinant roll_no

Similarly, {roll_no, name} → age is also
a non-trivial functional dependency,
since age is not a subset of {roll_no, name}

Sindhu Jose, CSE Dept, VJCET

The examples of non-trivial functional dependencies are-

AB → BC

AB → CD

Sindhu Jose, CSE Dept, VJCET

Properties of Functional Dependencies

• There are several useful rules that let you replace one set of
functional dependencies with an equivalent set.

• Some of those rules are as follows:
▫Reflexivity: If Y ⊆X, then X →Y
▫Augmentation: If X →Y , then XZ →Y Z
▫Transitivity: If X →Y and Y → Z, then X →Z
▫Union: If X →Y and X → Z, then X →YZ
▫Decomposition: If X →Y Z, then X →Y and X →Z
▫ Pseudotransitivity: If X →Y and W Y → Z, then W X →Z
▫Composition: If X →Y and Z →W, then XZ →YW

Sindhu Jose, CSE Dept, VJCET

Closure set of attribute

• Attribute closure of an attribute set can be defined as set of
attributes which can be functionally determined from it.

• To find attribute closure of an attribute set:
▫Add elements of attribute set to the result set.
▫Recursively add elements to the result set which can

be functionally determined from the elements of the
result set

Sindhu Jose, CSE Dept, VJCET

• R(A,B,C,D) with FD={A→B, B→C, C→D,D→A}

• Closure of A, A+=attribute which can be determined
from A

• A+=ABCD

• B+=BCDA

• C+=CDAB

• D+=DABC

(ie using closure if we can cover all
attribute then it is called Candidate
Key CK)

✔CK

✔ CK

✔ CK

• Candidate Keys of R are
A,B,C,D

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

GATE Question: Consider the relation scheme R = {E, F, G, H, I, J, K,

L, M, M} and the set of functional dependencies {{E, F} -> {G},

{F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is

the key for R?

A.{E,F}

B. {E, F, H}

C. {E, F, H, K, L}

D. {E}

Answer: Finding attribute closure of all given options, we get:

{E,F}+ = {EFGIJ}

{E,F,H}+ = {EFHGIJKLMN}

{E,F,H,K,L}+ = {EFHGIJKLMN}

{E}+ = {E}

{EFH}+ and {EFHKL}+ results in set of all attributes, but EFH is

minimal. So it will be candidate key. So correct option is (B).

Armstrong’s Axioms in Functional

Dependency

• The term Armstrong axioms refer to the sound and
complete set of inference rules or axioms, introduced
by WilliamW.

• Armstrong, that is used to test the logical implication
of functional dependencies.

• If F is a set of functional dependencies then the closure of F,
denoted as F+, is the set of all functional dependencies
logically implied by F.

• Armstrong’s Axioms are a set of rules, that when applied
repeatedly, generates a closure of functional dependencies.

Sindhu Jose, CSE Dept, VJCET

Axioms
• Axiom of reflexivity

▫ If A is a set of attributes and B is subset of A, then A
holds B. If B⊆A then A→B

▫ This property is trivial property.

• Axiom of augmentation

▫ If A→B holds and Y is attribute set, then AY→BY also
holds.

▫ That is adding attributes in dependencies, does not
change the basic dependencies.

▫ If A→B , then AC→BC for any C.

• Axiom of transitivity

▫ Same as the transitive rule in algebra, if A→B holds and
B→C holds, then A→C also holds.

▫Sindhu Jose, CSE Dept, VJCET

Secondary Rules
• Union

▫ If A→B holds and A→C holds, then A→BC
holds.

• Composition

▫ If A→B and X→Y holds, then AX→BY holds.

• Decomposition

▫ If A→BC holds then A→B and A→C holds

• Pseudo Transitivity

▫ If A→B holds and BC→D holds, then AC→D
holds.

Sindhu Jose, CSE Dept, VJCET

Equivalence of Sets of Functional

Dependencies
Definition.

A set of functional dependencies F is said to cover another

set of functional dependencies E if every FD in E is also in

F+; that is, if every dependency in E can be inferred from F;

alternatively, we can say that E is covered by F.

Definition

Two sets of functional dependencies E and F are equivalent if

E+ = F+. Therefore, equivalence means that every FD in E

can be inferred from F, and every FD in F can be inferred

from E; that is, E is equivalent to F if both the conditions—E

covers F and F covers E— hold.Sindhu Jose, CSE Dept, VJCET

How to find relationship between two

FD sets?
• Let FD1 and FD2

are two FD sets for
a relation R.
1. If all FDs of FD1

can be derived
from FDs present
in FD2, we can say
that FD2 ⊃FD1.

2. If all FDs of FD2 can
be derived from FDs
present in FD1, we
can say that FD1
⊃FD2.

3. If 1 and 2 both

Sindhu Jose, CSE Dept, VJCET

Steps to find the Equivalence of sets of Functional

Dependencies

Consider a relation R(A,B,C,D) having two FD sets

FD1 = {A->B, B->C, AB->D} and

FD2 = {A->B, B->C, A->C,A->D}

• Step 1. Checking whether all FDs of FD1 are present in

FD2

▫ A->B in set FD1 is present in set FD2.

▫ B->C in set FD1 is also present in set FD2.

▫ AB->D in present in set FD1 but not directly in FD2 but we

will check whether we can derive it or not. For set FD2,

(AB)+= {A,B,C,D}. It means that AB can functionally determine

A, B, C and D. So AB->D will also hold in set FD2.

▫ As all FDs in set FD1 also hold in set FD2, FD2⊃FD1 is true.Sindhu Jose, CSE Dept, VJCET

• Step 2. Checking whether all FDs of FD2 are present in

FD1

▫ A->B in set FD2 is present in set FD1.

▫ B->C in set FD2 is also present in set FD1.

▫ A->C is present in FD2 but not directly in FD1 but we

will check whether we can derive it or not. For set FD1,

(A)+ =

{A,B,C,D}. It means that A can functionally determine A, B,

C and D. SO A->C will also hold in set FD1.

▫ A->D is present in FD2 but not directly in FD1 but we

will check whether we can derive it or not. For set FD1,

(A)+ =

{A,B,C,D}. It means that A can functionally determine A, B,

C and D. SO A->D will also hold in set FD1.

▫ As all FDs in set FD2 also hold in set FD1, FD1⊃FD2 is true.Sindhu Jose, CSE Dept, VJCET

• Step 3

▫ As FD2 ⊃FD1 and FD1 ⊃FD2 both are true ,

FD2 is equivalent to FD1 .

▫ These two FD sets are semantically equivalent as
FD1+ = FD2+ .

Sindhu Jose, CSE Dept, VJCET

Minimal cover of a set of Functional

Dependencies

➢A minimal cover of a set of functional dependencies E is a
set of functional dependencies F that satisfies the property
that every dependency in E is in the closure F+ of F.

➢This property is lost if any dependency from the set F is
removed;

➢F must have no redundancies in it, and the dependencies in F
are in a standard form (eg:A->C and AB->C)

➢A minimal set of dependencies as being a set of
dependencies in a standard or canonical form and with no
redundancies

Sindhu Jose, CSE Dept, VJCET

• To satisfy these properties, we can formally define a set of

functional dependencies F to be minimal if it satisfies the

following conditions:

1. Every dependency in F has a single attribute for

its right-hand side.

2. We cannot replace any dependency X → A in F with a

dependency Y → A, where Y is a proper subset of X,

and still have a set of dependencies that is equivalent to

F.

3. We cannot remove any dependency from F and

still have a set of dependencies that is equivalent

to F.

Sindhu Jose, CSE Dept, VJCET

Note: If several sets of FDs qualify as minimal
covers of E by the definition above, it is
customary to use additional criteria for
minimality.

• For example, we can choose the minimal set
with the smallest number of dependencies or
with the smallest total length

Sindhu Jose, CSE Dept, VJCET

Example: find the minimal cover of set of

FDs be E = {B → A, D → A, AB → D}

• Step 1
▫ All above dependencies are in canonical form
▫ that is, they have only one attribute on the right-
hand side

• Step 2
▫ we need to determine if AB → D has any

redundant attribute on the left-hand side;
▫ that is, can it be replaced by B → D or A → D?
▫ Since B → A, by augmenting with B on both sides

(IR2), we have BB → AB, or B → AB (i). However,
AB → D is given(ii).

Sindhu Jose, CSE Dept, VJCET

▫ Hence by the transitive rule (IR3), we get if

(i) B → AB and (ii) AB → D , then B→ D. Thus AB
→ D may be replaced by B → D.

▫ We now have a set equivalent to original E, say

E' = {B → A, D → A, B → D}.

▫ No further reduction is possible in step 2 since all
FDs have a single attribute on the left-hand side.

• Step 3

▫ we look for a redundant FD in E'.

▫ By using the transitive rule on B → D and D → A,
we derive B→ A.

▫ Hence B → A is redundant in E' and can be
eliminated.

▫ Therefore, the minimal cover of E is {B → D, D → A}.
Sindhu Jose, CSE Dept, VJCET

Normalization of Relations

 Normalization of data can be considered a process of analyzing
the given relation schemas based on their FDs and primary keys to
achieve the desirable properties of

(1) minimizing redundancy and

(2)minimizing the insertion, deletion, and update
anomalies.

 It can be considered as a “filtering” process to make the design have
successively better quality.

 Unsatisfactory relation schemas that do not meet certain
conditions—the normal form tests—are decomposed into
smaller relation schemas that meet the tests and hence possess the
desirable properties.

 The process proceeds in a top-down fashion .

Sindhu Jose, CSE Dept, VJCET

Normalization of Relations
 First proposed by Codd.

 Codd proposed three normal forms initially, called first, second, and
third normal form.

 A stronger definition of 3NF called Boyce-Codd normal form
(BCNF) was proposed later by Boyce and Codd.

 All these normal forms are based on a single analytical tool: the
functional dependencies among the attributes of a relation.

 Later, a fourth normal form (4NF) and a fifth normal form (5NF) were
proposed, based on the concepts of multivalued dependencies and
join dependencies, respectively.

 Definition: The normal form of a relation refers to the highest
normal form condition that it meets, and hence indicates the degree to
which it has been normalized.

 Denormalization:

➢ The process of storing the join of higher normal form relations as a
base relation—which is in a lower normal form

Sindhu Jose, CSE Dept, VJCET

Practical Use of Normal Forms

 Normalization is carried out in practice so that the resulting designs

are of high quality and meet the desirable properties.

 The practical utility of these normal forms becomes questionable

when the constraints on which they are based are rare, and hard to

understand or to detect by the database designers and users.

 Thus, database design as practiced in industry today pays particular

attention to normalization only up to 3NF, BCNF, or at most 4NF.

 The database designers need not normalize to the

highest possible normal form.

 Relations may be left in a lower normalization status, such as 2NF,

for performance reasons.

Sindhu Jose, CSE Dept, VJCET

Levels of Normalization

R
e
d
u
n
d
a
n
c
y

N
u
m

b
e
r

o
f
T
a
b
le

s

• Levels of normalization based on the amount of
redundancy in the database.

• Various levels of normalization are:

▫ First Normal Form (1NF)

▫ Second Normal Form (2NF)

▫ Third Normal Form (3NF)

▫ Boyce-Codd Normal Form (BCNF)

▫ Fourth Normal Form (4NF)

▫ Fifth Normal Form (5NF)

▫ Domain Key Normal Form (DKNF)

Most databases should be 3NF or BCNF in order to avoid the

database anomalies.

C
o
m

p
le

x
it
y

Sindhu Jose, CSE Dept, VJCET

Each higher level is a subset of the lower level

1NF

2NF

3NF

4NF

5NF

DKNF

Sindhu Jose, CSE Dept, VJCET

First Normal Form (1NF)

➢It states that the domain of an attribute must include only

atomic (simple, indivisible) values and

that the value of any attribute in a tuple must be a single value

from the domain of that attribute.

➢Hence, 1NF disallows having a set of values, a tuple of values,

or a combination of both as an attribute value for a single tuple.

➢The only attribute values permitted by 1NF are single atomic

(or indivisible) values.

Sindhu Jose, CSE Dept, VJCET

Remove the attribute Colour

that violates 1NF and place it in

a separate relation along with

the primary key Product Id of

Table_Product.

Sindhu Jose, CSE Dept, VJCET

After decomposing it into First normal form

Sindhu Jose, CSE Dept, VJCET

Second Normal Form (2NF)

• A table is said to be in 2NF if both the following conditions

hold:

▫Table is in 1NF (First normal form)

▫ A relation schema R is in 2NF if every nonprime

attribute A in R is fully functionally dependent on

the primary key of R.

• An attribute that is not part of any candidate key is known

as non-prime attribute.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

 A functional dependency X →Y is a full functional

dependency if removal of any attribute A from X

means that the dependency does not hold any more;

 A functional dependency X →Y is a partial

dependency if some attribute A ε X can be removed

from X and the dependency still holds; that is, for some

A ε X, (X – {A}) →Y.

Second Normal Form
 Consider the EMP_PROJ relation:

 Here the candidate key is {Ssn,Pnumber}

 {Ssn,Pnumber}→Hours is a full dependency (neither Ssn → Hours nor
Pnumber → Hours holds).

 The dependency {Ssn}→Ename is a partial dependency.

 Similarly {Pnumber}→Pname,Plocation is also partial dependency .

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

 EMP_PROJ is in1NF but is not in 2NF. The nonprime

attribute Ename violates 2NF because of FD2, and nonprime

attributes Pname and Plocation violates 2NF because of FD3.

 The functional dependencies FD2 and FD3 make Ename,

Pname, and Plocation partially dependent

on the primary key {Ssn, Pnumber} of EMP_PROJ, thus

violating the 2NF test.

Second Normal Form

 If a relation schema is not in 2NF, it can be 2NF normalized into a

number of 2NF relations in which nonprime attributes are

associated only with the part of the primary key on which they are

fully functionally dependent.

Sindhu Jose, CSE Dept, VJCET

Third Normal Form
 Third normal form (3NF) is based on the concept of

transitive dependency.

 A functional dependency X→Y in a relation schema R is a
transitive dependency if there exists a set of attributes Z
in R that is neither a candidate key nor a subset of any key of
R, and both X → Z and Z →Y hold.

 Definition1 : A relation schema R is in 3NF if it satisfies
2NF and no nonprime attribute of R is transitively
dependent on the primary key.

 Defenition2 : A table is in 3NF if it is in 2NF and for each
functional dependency

X->Y at least one of the following conditions hold:
▫X is a super key of table
▫Y is a prime attribute of table

Sindhu Jose, CSE Dept, VJCET

Third Normal Form

 Example 1: Consider EMP_DEPT Relation

 The dependency Ssn → Dmgr_ssn is transitive through Dnumber in

EMP_DEPT, because both the dependencies Ssn → Dnumber and

Dnumber → Dmgr_ssn hold and Dnumber is neither a key itself nor

a subset of the key of EMP_DEPT.

 The dependency of Dmgr_ssn on Dnumber is undesirable in

EMP_DEPT since Dnumber is not a key of EMP_DEPT.

Sindhu Jose, CSE Dept, VJCET

Third Normal Form
 The relation EMP_DEPT is not in 3NF because of the transitive

dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber.

Sindhu Jose, CSE Dept, VJCET

Example 2:
 Consider the relation schema LOTS, which describes parcels of land for

sale in various counties of a state.

 Suppose that there are two candidate keys: Property_id# and

{County_name,Lot#}; that is, Lot numbers are unique only within

each county, but Property_id# numbers are unique across counties for

the entire state.

Sindhu Jose, CSE Dept, VJCET

 Based on the two candidate keys Property_id# and {County_name,

Lot#}, the functional dependencies FD1 and FD2 hold.

 We choose Property_id# as the primary key, so it is underlined.

 Suppose that the following two additional functional dependencies

hold in LOTS:

FD3: County_name →Tax_rate

FD4:Area → Price

 The dependency FD3 says that the tax rate is fixed for a given county

(does not vary lot by lot within the same county)

 FD4 says that the price of a lot is determined by its area regardless of

which county it is in.

Sindhu Jose, CSE Dept, VJCET

 The LOTS relation schema violates the general definition of 2NF

because Tax_rate is partially dependent on the candidate key

{County_name, Lot#}, due to FD3.

 To normalize LOTS into 2NF, we decompose it into the two relations

LOTS1 and LOTS2.

Sindhu Jose, CSE Dept, VJCET

 We construct LOTS1 by removing the attribute Tax_rate that violates

2NF from LOTS and placing it with County_name into another relation

LOTS2.

 Both LOTS1 and LOTS2 are in 2NF.

 FD4 does not violate 2NF and is carried over to LOTS1.

 Now consider the Definition of 3NF: A relation schema R is in third

normal form (3NF) if, whenever a nontrivial functional dependency

X→A holds in R, either (a) X is a superkey of R, or (b) A is a prime

attribute of R.

 According to this definition, LOTS2 is in 3NF.

 FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is

not a prime attribute in LOTS1.

Sindhu Jose, CSE Dept, VJCET

 To normalize LOTS1 into 3NF, we decompose it into the relation schemas

LOTS1A and LOTS1B.

 We construct LOTS1A by removing the attribute Price that violates 3NF

from LOTS1 and placing it with Area into another relation LOTS1B.

 Both LOTS1A and LOTS1B are in 3NF.

 Thus to convert LOTS table to 3NF, it is divided into three : LOTS1A ,

LOTS1B and LOT2

Sindhu Jose, CSE Dept, VJCET

Boyce-Codd Normal Form (BCNF)

• It is an advance version of 3NF that’s why it is also referred

as 3.5NF.

• BCNF is stricter than 3NF.

• Defenition: A table is in BCNF if it is in 3NF and for every

functional dependency X->Y, X should be the super key of

the table.

• That is, every relation in BCNF is also in 3NF; however, a

relation in 3NF is not necessarily in BCNF

Sindhu Jose, CSE Dept, VJCET

Boyce-Codd Normal Form

 Consider a relationTEACH with the following dependencies:

 {student_id, subject} is a candidate key for this relation.

 Consider two functional dependencies of TEACH Relation

FD1: {student_id, subject} → professor

FD2: professor → subject

Sindhu Jose, CSE Dept, VJCET

Boyce-Codd Normal Form
 This relation is in 1 NF, 2 NF and 3NF but not BCNF because of

FD2.

 Decomposition of this relation schema into two schemas is not

straightforward because it may be decomposed into one of the

three following possible pairs:

1. {student_id, professor} and {student_id, subject}.

2. {subject, professor} and {subject, student_id}.

3. {student_id, professor, } and{professor, subject}

 The desirable decomposition among those just shown is 3

because it will not generate spurious tuples after a join.

Sindhu Jose, CSE Dept, VJCET

Boyce-Codd Normal Form
 The decomposition 3 for TEACH yields two relations in BCNF

as:

TEACH1(student_id, professor) and TEACH2(professor,

subject) where {student_id, professor} will be the key in

TEACH1 and professor will be the key inTEACH2

 This is an example of a case where we may reach the same

ultimate BCNF design via alternate paths of normalization.

Sindhu Jose, CSE Dept, VJCET

Nonadditive join(Lossless join) and Dependency

preservation

 The process of normalization through decomposition must also

confirm the existence of additional properties that the relational

schemas, taken together, should possess.

 These would include two properties:

 The nonadditive join or lossless join property, which

guarantees that the spurious tuple generation problem does

not occur with respect to the relation schemas created after

decomposition.

 The dependency preservation property, which ensures

that each functional dependency is represented in some

individual relation resulting after decomposition.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Nonadditive join(Lossless join)

 Definition: A decomposition D = {R1, R2, ..., Rm} of R has

the lossless(nonadditive) join property with respect to the set of

dependencies F on R if, for every relation state r of R that satisfies

F, the following holds, where * is the NATURAL JOIN of all the

relations in D: *(πR1(r), ..., πRm(r)) = r.

 The word loss in lossless refers to loss of information, not to

loss of tuples. If a decomposition does not have the lossless join

property, we may get additional spurious tuples after the

PROJECT (π) and NATURAL JOIN (*) operations are applied;

these additional tuples represent erroneous or invalid information.

 The Lossless join(nonadditive join) property ensures that no

spurious tuples result after the application of PROJECT and JOIN

operations.

Example of Lossless-Join Decomposition

• Lossless join decomposition
• Decomposition of R = (A, B, C) R1 = (A, B)

R2 = (B, C)
• After PROJECT (π) and NATURAL JOIN (*)

operations are applied on R1 and R2, no spurious tuples

are there in the result.

Sindhu Jose, CSE Dept, VJCET

Lossy Decomposition

• Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

• The next slide shows how we lose information ie. we cannot

reconstruct the original employee relation as it generates

spurious tuples and so, this is a lossy decomposition.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

employee2employee1

Testing for non additive join property

Example

Dependency Preservation

Defenition: A decomposition D = {R1, R2, ..., Rm} of R is

dependency-preserving with respect to F if the union of the

projections of F on each Ri in D is equivalent to F; that is,

((πR1(F)) ∪ ...∪ (πRm(F)))+ = F+.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Algorithm : Relational Synthesis into 3NF with Dependency

Preservation and Nonadditive Join Property

 Input: A relation R and a set of functional dependencies F on the

attributes of R.

Steps

1. Find a minimal cover G for F.

2. For each left-hand-side X of a functional dependency that appears in G,

create a relation schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪
{Ak} }, where X→A1, X→A2, ..., X→Ak are the only dependencies

in G with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one

more relation schema in D that contains attributes that form a key of R.

4. Eliminate redundant relations from the resulting set of relations in the

relational database schema.

Sindhu Jose, CSE Dept, VJCET

Example: Consider the following relation: R(Emp_ssn, Pno, Esal, Ephone, Dno,
Pname, Plocation) The following dependencies are present:

FD1: Emp_ssn → {Esal, Ephone, Dno}

FD2: Pno → { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

 By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the
relation R.

 Let the Minimal cover G: {Emp_ssn → Esal, Ephone, Dno; Pno → Pname,
Plocation}

 The second step produces relations R1 and R2 as shown below . However, now
in step 3, we will generate a relation corresponding to the key {Emp_ssn,
Pno}. Hence, the resulting design contains:

R1 (Emp_ssn , Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

R3 (Emp_ssn, Pno)

 This design achieves both the desirable properties of dependency
preservation and nonadditive(lossless) join.

